Sleep-stage-dependent alterations in cerebral oxygen metabolism quantified by magnetic resonance

J Neurosci Res. 2024 Mar;102(3):e25313. doi: 10.1002/jnr.25313.

Abstract

A key function of sleep is to provide a regular period of reduced brain metabolism, which is critical for maintenance of healthy brain function. The purpose of this work was to quantify the sleep-stage-dependent changes in brain energetics in terms of cerebral metabolic rate of oxygen (CMRO2 ) as a function of sleep stage using quantitative magnetic resonance imaging (MRI) with concurrent electroencephalography (EEG) during sleep in the scanner. Twenty-two young and older subjects with regular sleep hygiene and Pittsburgh Sleep Quality Index (PSQI) in the normal range were recruited for the study. Cerebral blood flow (CBF) and venous oxygen saturation (SvO2 ) were obtained simultaneously at 3 Tesla field strength and 2.7-s temporal resolution during an 80-min time series using OxFlow, an in-house developed imaging sequence. The method yields whole-brain CMRO2 in absolute physiologic units via Fick's Principle. Nineteen subjects yielded evaluable data free of subject motion artifacts. Among these subjects, 10 achieved slow-wave (N3) sleep, 16 achieved N2 sleep, and 19 achieved N1 sleep while undergoing the MRI protocol during scanning. Mean CMRO2 was 98 ± 7(μmol min-1 )/100 g awake, declining progressively toward deepest sleep stage: 94 ± 10.8 (N1), 91 ± 11.4 (N2), and 76 ± 9.0 μmol min-1 /100 g (N3), with each level differing significantly from the wake state. The technology described is able to quantify cerebral oxygen metabolism in absolute physiologic units along with non-REM sleep stage, indicating brain oxygen consumption to be closely associated with depth of sleep, with deeper sleep stages exhibiting progressively lower CMRO2 levels.

Keywords: cerebral blood flow; global cerebral metabolic rate of oxygen; non-REM sleep; venous oxygen saturation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Humans
  • Magnetic Resonance Imaging*
  • Magnetic Resonance Spectroscopy
  • Oxygen
  • Sleep
  • Sleep Stages*

Substances

  • Oxygen