Enhanced branched-chain amino acid metabolism improves age-related reproduction in C. elegans

Nat Metab. 2024 Apr;6(4):724-740. doi: 10.1038/s42255-024-00996-y. Epub 2024 Feb 28.

Abstract

Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Notably, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with vitamin B1, a cofactor needed for BCAA metabolism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aging* / metabolism
  • Amino Acids, Branched-Chain* / metabolism
  • Animals
  • Caenorhabditis elegans Proteins* / genetics
  • Caenorhabditis elegans Proteins* / metabolism
  • Caenorhabditis elegans* / genetics
  • Caenorhabditis elegans* / metabolism
  • Mitochondria* / metabolism
  • Oocytes* / metabolism
  • Reactive Oxygen Species / metabolism
  • Reproduction* / physiology

Substances

  • Amino Acids, Branched-Chain
  • Caenorhabditis elegans Proteins
  • Reactive Oxygen Species