Cancer as an uncontrolled growth of cells due to existing mutation in host cells that may proliferate, induce angiogenesis and sometimes metastasize due to the favorable tumor microenvironment (TME). Since it kills more than any disease, biomedical science does not relent in studying the exact pathogenesis. It was believed to be a problem that lies in the nucleus of the host cells; however, recent oncology findings are shifting attention to the mitochondria as an adjuvant to cancer pathogenesis. The changes in the gene are strongly related to cellular metabolism and metabolic reprogramming. It is now understood that reprogramming the TME will have a direct effect on the immune cells' metabolism. Although there are a number of studies on immune cells' response towards tumor energy reprogramming and cancer progression, there is still no existence with the updated collation of these immune cells' response to distinct energy reprogramming in cancer studies. To this end, this mini review shed some light on cancer energy reprogramming mechanisms and enzyme degradation pathways, the cancer pathogenicity activity series involved with reduced lactate production, the specific immune cell responses due to the energy reprogramming. This study highlighted some prospects and future experiments in harnessing the host immune response towards the altered energy metabolism due to cancer.
Keywords: Cancer metabolism; Energy reprogramming; Enzyme degradation pathways; Immune cells response; TME.
Copyright © 2024 Elsevier Ltd. All rights reserved.