Background: Cholangiocarcinoma represents a malignant neoplasm originating from the hepatobiliary tree, with a subset of tumors developing inside the liver. Intrahepatic cholangiocarcinomas (ICC) commonly exhibit an asymptomatic presentation, rendering both diagnosis and treatment challenging. Cuproptosis, an emerging regulated cell death pathway induced by copper ions, has garnered attention recently. As cancer cells show altered copper metabolism and comparatively higher copper needs, cuproptosis may play a role in the development of ICC. However, studies investigating this possibility are currently lacking.
Methods: Single-cell and bulk RNA sequence data were analyzed, and correlations were established between the expression of cuproptosis-related molecules and ICC patient survival. Genes with predicting survival were used to create a CUPT score using Cox and LASSO regression and tumor mutation burden (TMB) analysis. The CIBERSORT software was employed to characterize immune cell infiltration within the tumors. Furthermore, immune infiltration prediction, biological function enrichment, and drug sensitivity analyses were conducted to explore the potential implications of the cuproptosis-related signature. The effects of silencing solute carrier family 39 member 4 gene (SLC39A4) expression using siRNA were investigated using assays measuring cell proliferation, colony formation, and cell migration. Key genes of cuproptosis were detected by western blotting.
Results: The developed CUPT score divided patients into high and low CUPT score groups. Those with a low score had significantly better prognosis and longer survival. In contrast, high CUPT scores were associated with worse clinical outcomes and significantly higher TMB. Comparisons of the two groups also indicated differences in the immune infiltrate present in the tumors. Finally, we were able to identify 95 drugs potentially affecting the cuproptosis pathway. Some of these might be effective in the treatment of ICC. The in vitro experiments revealed that suppressing the expression of SLC39A4 in ICC cell lines resulted in reduced cell proliferation, colony formation, and cell migration. It also led to an increase in cell death and the upregulation of key genes associated with cuproptosis, namely ferredoxin 1 (FDX1) and dihydrolipoyl transacetylase (DLAT). These findings strongly suggest that this cuproptosis-associated molecule may play a pivotal role in the development and metastasis of ICC.
Conclusions: Changes in the expression of a cuproptosis-related gene signature can predict the clinical prognosis of ICC with considerable accuracy. This supports the notion that cuproptosis influences the diversity and complexity of the immune microenvironment, mutational landscape, and biological behavior of ICC. Understanding this pathway better may hold promise for the development of innovative strategies in the management of this disease.
Keywords: Cuproptosis; Immune microenvironment; Intrahepatic cholangiocarcinoma; Prognostic signature; Single-cell analysis.
© 2024. The Author(s).