Silicon-oxygen compounds are among the most important ones in the natural sciences, occurring as building blocks in minerals and being used in semiconductors and catalysis. Beyond the well-known silicon dioxide, there are phases with different stoichiometric composition and nanostructured composites. One of the key challenges in understanding the Si-O system is therefore to accurately account for its nanoscale heterogeneity beyond the length scale of individual atoms. Here we show that a unified computational description of the full Si-O system is indeed possible, based on atomistic machine learning coupled to an active-learning workflow. We showcase applications to very-high-pressure silica, to surfaces and aerogels, and to the structure of amorphous silicon monoxide. In a wider context, our work illustrates how structural complexity in functional materials beyond the atomic and few-nanometre length scales can be captured with active machine learning.
© 2024. The Author(s).