Introduction: In patients with advanced NSCLC (aNSCLC), the impact of KRAS mutations (m) and comutations with STK11 and KEAP1 on outcomes across different PD-L1 levels remains incompletely understood. We aimed to investigate the frequency of KRAS mutations and comutations across PD-L1 levels, and the association between these mutations and survival, stratified by PD-L1 expression.
Methods: We conducted a nationwide cohort study of patients diagnosed with aNSCLC between 2016 and 2021 treated with frontline (chemo)immunotherapy, who underwent molecular genotyping including KRAS, STK11, and KEAP1. Real-world overall survival (OS) and progression-free survival (rwPFS) were estimated using Kaplan-Meier methodology. Cox multivariable regressions were used to evaluate the association between KRASm and survival across different PD-L1 strata, and to assess whether the association between KRASm and survival differed by PD-L1 level. Finally, within subgroups defined by PD-L1 expression, we used interaction terms to assess whether co-mutations with STK11 and KEAP1 moderated the association between KRAS mutation and survival.
Results: Of our 2593-patient cohort, 982 (37.9 %) were KRASm and 1611 (62.1 %) KRASwt. KRASm were enriched in the PD-L1 ≥50 % cohort (334/743, 45 %), but within patients with KRASm, co-mutations with STK11 and KEAP1 were enriched in the PD-L1 0 % cohort. KRASm was associated with significantly worse OS in the PD-L1 0 % cohort compared to the PD-L1 ≥50 % cohort (P for interaction = 0.008). On adjusted analyses stratified by PD-L1, KRASm was associated with worse survival only in the PD-L1 0 % group (OS HR 1.46, p = 0.001). KEAP1 and STK11 comutations were most strongly associated with worse OS in the PD-L1 0 % subgroup; patients with triple KRASm/KEAPm/STK11m PD-L1 0 % NSCLC experienced the worst outcomes.
Conclusions: KRASm are associated with worse overall survival in PD-L1 negative NSCLC; however, this association is largely driven by comutations with STK11 and KEAP1, which are enriched in PD-L1 negative tumors.
Keywords: Immunotherapy; KRAS mutation; Non small cell lung cancer; Real world data.
Copyright © 2024 Elsevier B.V. All rights reserved.