Privacy preserved and decentralized thermal comfort prediction model for smart buildings using federated learning

PeerJ Comput Sci. 2024 Feb 29:10:e1899. doi: 10.7717/peerj-cs.1899. eCollection 2024.

Abstract

Thermal comfort is a crucial element of smart buildings that assists in improving, analyzing, and realizing intelligent structures. Energy consumption forecasts for such smart buildings are crucial owing to the intricate decision-making processes surrounding resource efficiency. Machine learning (ML) techniques are employed to estimate energy consumption. ML algorithms, however, require a large amount of data to be adequate. There may be privacy violations due to collecting this data. To tackle this problem, this study proposes a federated deep learning (FDL) architecture developed around a deep neural network (DNN) paradigm. The study employs the ASHRAE RP-884 standard dataset for experimentation and analysis, which is available to the general public. The data is normalized using the min-max normalization approach, and the Synthetic Minority Over-sampling Technique (SMOTE) is used to enhance the minority class's interpretation. The DNN model is trained separately on the dataset after obtaining modifications from two clients. Each client assesses the data greatly to reduce the over-fitting impact. The test result demonstrates the efficiency of the proposed FDL by reaching 82.40% accuracy while securing the data.

Keywords: Federated deep learning; Machine learning; Privacy; Smart buildings; Thermal comfort.

Grants and funding

The authors received no funding for this work.