Exposure to metals increases the risk of many diseases and has become a public health concern. However, few studies have focused on the effect of metal on abdominal aortic calcification (AAC), especially the combined effects of metal mixtures. In this study, we aim to investigate the combined effect of metals on AAC risk and determine the key components in the multiple metals. We tried to investigate the relationship between multiple metal exposure and AAC risk. Fourteen urinary metals were analyzed with five statistical models as follows: generalized linear regression, weighted quantile sum regression (WQS), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) models. A total of 838 participants were involved, of whom 241 (28.8%) had AAC. After adjusting for covariates, in multiple metal exposure logistic regression, cadmium (Cd) (OR = 1.364, 95% CI = 1.035-1.797) was positively associated with AAC risk, while cobalt (Co) (OR = 0.631, 95% CI = 0.438-0.908) was negatively associated with AAC risk. A significant positive effect between multiple metal exposure and AAC risk was observed in WQS (OR = 2.090; 95% CI = 1.280-3.420, P < 0.01), Qgcomp (OR = 1.522, 95% CI = 1.012-2.290, P < 0.05), and BKMR models. It was found that the positive association may be driven primarily by Cd, lead (Pb), uranium (U), and tungsten (W). Subgroups analysis showed the association was more significant in participants with BMI ≥ 25 kg/m2, abdominal obesity, drinking, and smoking. Our study shows that exposure to multiple metals increases the risk of AAC in adults aged ≥ 40 years in the USA and that Cd, Pb, U, and W are the main contributors. The association is stronger in participants who are obese, smoker, or drinker.
Keywords: Abdominal aortic calcification; BKMR; Metal; Qgcomp; WQS.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.