Background: Childhood cancer survivors are at high risk for morbidity and mortality and poor patient-reported outcomes, typically health-related quality of life (HRQOL). However, associations between DNA methylation-based aging biomarkers and HRQOL have not been evaluated.
Methods: DNA methylation was generated with Infinium EPIC BeadChip on blood-derived DNA (median for age at blood draw = 34.5 years, range = 18.5-66.6 years), and HRQOL was assessed with age at survey (mean = 32.3 years, range = 18.4-64.5 years) from 2206 survivors in the St Jude Lifetime Cohort. DNA methylation-based aging biomarkers, including epigenetic age using multiple clocks (eg, GrimAge) and others (eg, DNAmB2M: beta-2-microglobulin; DNAmADM: adrenomedullin), were derived from the DNAm Age Calculator (https://dnamage.genetics.ucla.edu). HRQOL was assessed using the Medical Outcomes Study 36-Item Short-Form Health Survey to capture 8 domains and physical and mental component summaries. General linear models evaluated associations between HRQOL and epigenetic age acceleration (EAA; eg, EAA_GrimAge) or other age-adjusted DNA methylation-based biomarkers (eg, ageadj_DNAmB2M) after adjusting for age at blood draw, sex, cancer treatments, and DNA methylation-based surrogate for smoking pack-years. All P values were 2-sided.
Results: Worse HRQOL was associated with greater EAA_GrimAge (physical component summaries: β = -0.18 years, 95% confidence interval [CI] = -0.251 to -0.11 years; P = 1.85 × 10-5; and 4 individual HRQOL domains), followed by ageadj_DNAmB2M (physical component summaries: β = -0.08 years, 95% CI = -0.124 to -0.037 years; P = .003; and 3 individual HRQOL domains) and ageadj_DNAmADM (physical component summaries: β = -0.082 years, 95% CI = -0.125 to -0.039 years; P = .002; and 2 HRQOL domains). EAA_Hannum (Hannum clock) was not associated with any HRQOL.
Conclusions: Overall and domain-specific measures of HRQOL are associated with DNA methylation measures of biological aging. Future longitudinal studies should test biological aging as a potential mechanism underlying the association between poor HRQOL and increased risk of clinically assessed adverse health outcomes.
© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please email: [email protected].