Zinc oxide (ZnO) and magnesium-doped zinc oxide (Mg-doped ZnO) nanoparticles (NPs) were synthesized using Ziziphus oxyphylla 's aqueous leaf extract as reducing agent. UV-Vis absorption peaks at 324 nm and 335 nm were indicative of ZnO and Mg-doped ZnO, respectively. FTIR absorption bands observed at 3238, 1043, 1400, 1401, 2186 and 2320 cm -1 suggested the presence of phenols, alcohols, saturated hydrocarbons, and possibly alkynes. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy revealed pure, spherical and agglomerated NPs with average size of 35.9 nm (ZnO) and 56.8 nm (Mg-doped ZnO). Both NPs remained active against all bacterial strains with the highest inhibition zones observed against Proteus vulgaris (21.16±1.25 mm for ZnO and 24.1±0.76 mm for Mg-doped ZnO. EtBr fluorescence (cartwheel assay) indicated efflux pump blockage, suggesting its facilitation in the bacterial growth inhibition. Antioxidant potential, determined via DPPH radical scavenging assay, revealed stronger antioxidant potential for Mg-doped ZnO (IC [Formula: see text]/mL) than pure ZnO (IC [Formula: see text]/mL). Furthermore, both NPs showed antileishmanial activity against Leishmania tropica promastigotes (IC [Formula: see text]/mL for Mg-doped ZnO and 64.34±6.56 for ZnO), while neither NP exhibited significant hemolysis, indicating biocompatibility and further assessment for their drugability.