Development of an experimental model for liver abscess induction in Holstein steers using an acidotic diet challenge and bacterial inoculation

J Anim Sci. 2024 Jan 3:102:skae046. doi: 10.1093/jas/skae046.

Abstract

Holstein steers (n = 40; initial BW = 84.9 ± 7.1 kg) were used to study the genesis of liver abscesses (LA) using an acidotic diet challenge with or without intraruminal bacterial inoculation. Steers were housed in individual pens inside a barn and randomly assigned to one of three treatments: (1) low-starch control diet comprised primarily of dry-rolled corn and wet corn gluten feed (CON); (2) high-starch acidotic diet with steam-flaked corn (AD); or (3) acidotic diet plus intraruminal inoculation with Fusobacterium necrophorum subsp. necrophorum (9.8 × 108 colony forming units [CFU]/mL), Trueperella pyogenes (3.91 × 109 CFU/mL), and Salmonella enterica serovar Lubbock (3.07 × 108 CFU/mL), previously isolated from LA (ADB). Steers in AD and ADB were fed the acidotic diet for 3 d followed by 2 d of the CON diet, and this cycle was repeated four times. On day 23, ADB steers were intraruminally inoculated with the bacteria. At necropsy, gross pathology of livers, lungs, rumens, and colons was noted. Continuous data were analyzed via mixed models as repeated measures over time with individual steer as the experimental unit. Mixed models were also used to determine the difference in prevalence of necropsy scores among treatments. Ruminal pH decreased in AD and ADB steers during each acidotic diet cycle (P ≤ 0.05). LA prevalence was 42.9% (6 of 14) in ADB vs. 0% in AD or CON treatments (P < 0.01). Ruminal damage was 51.1% greater in ADB than in AD (P ≤ 0.04). Culture of LA determined that 100% of the abscesses contained F. necrophorum subsp. necrophorum, 0% contained T. pyogenes, 50% contained Salmonella, and 50% contained a combination of F. necrophorum subsp. necrophorum and Salmonella. The F. necrophorum subsp. necrophorum was clonally identical to the strain used for the bacterial inoculation based on phylogenetic analysis of the whole genome. This experimental model successfully induced rumenitis and LA in Holstein steers and confirms the central dogma of LA pathogenesis that acidosis and rumenitis lead to the entry of F. necrophorum into the liver to cause abscesses. Our findings suggest that an acidotic diet, in conjunction with intraruminal bacterial inoculation, is a viable model to induce LA. Further research is needed to determine the repeatability of this model, and a major application of the model will be in evaluations of novel interventions to prevent LA.

Keywords: Holstein steers; bacterial pathogens; liver abscesses; rumenitis; ruminal acidosis.

Plain language summary

Liver abscesses (LA) in feedlots are costly to the beef industry. At harvest, LA cause an increase in liver condemnations, carcass trimming, and a decrease in quality grade. The objective of this research was to develop an experimental LA model in Holstein steers using an acidotic diet with and without intraruminal inoculation of bacteria involved in LA formation. These data suggest acidotic diet challenges in conjunction with bacterial inoculation were able to induce LA in Holstein steers. The acidotic diet alone caused reduced rumen content pH and caused rumen wall inflammation and damage, observed at harvest. Nonetheless, the addition of bacteria had a compounding effect on rumen damage. Both bacteria inoculated were isolated from 57% of LA suggesting they may work in synergy to form LA.

Publication types

  • Randomized Controlled Trial, Veterinary

MeSH terms

  • Acidosis* / veterinary
  • Animal Feed / analysis
  • Animals
  • Diet / veterinary
  • Fusobacterium*
  • Liver Abscess* / prevention & control
  • Liver Abscess* / veterinary
  • Models, Theoretical
  • Phylogeny
  • Rumen / microbiology
  • Starch

Substances

  • Starch

Supplementary concepts

  • Fusobacterium necrophorum subsp. necrophorum