Study objectives: Wearable devices that monitor sleep stages and heart rate offer the potential for longitudinal sleep monitoring in patients with neurodegenerative diseases. Sleep quality reduces with disease progression in Huntington's disease (HD). However, the involuntary movements characteristic of HD may affect the accuracy of wrist-worn devices. This study compares sleep stage and heart rate data from the Fitbit Charge 4 (FB) against polysomnography (PSG) in participants with HD.
Methods: Ten participants with manifest HD wore an FB during overnight hospital-based PSG, and 9 of these participants continued to wear the FB for 7 nights at home. Sleep stages (30-second epochs) and minute-by-minute heart rate were extracted and compared against PSG data.
Results: FB-estimated total sleep and wake times and sleep stage times were in good agreement with PSG, with intraclass correlations of 0.79-0.96. However, poor agreement was observed for wake after sleep onset and the number of awakenings. FB detected waking with 68.6 ± 15.5% sensitivity and 93.7 ± 2.5% specificity, rapid eye movement sleep with high sensitivity and specificity (78.7 ± 31.9%, 95.6 ± 2.3%), and deep sleep with lower sensitivity but high specificity (56.4 ± 28.8%, 95.0 ± 4.8%). FB heart rate was strongly correlated with PSG, and the mean absolute error between FB and PSG heart rate data was 1.16 ± 0.42 beats/min. At home, longer sleep and shorter wake times were observed compared with hospital data, whereas percentage sleep stage times were consistent with hospital data.
Conclusions: Results suggest the potential for long-term monitoring of sleep patterns using wrist-worn wearable devices as part of symptom management in HD.
Citation: Doheny EP, Renerts K, Braun A, et al. Assessment of Fitbit Charge 4 for sleep stage and heart rate monitoring against polysomnography and during home monitoring in Huntington's disease. J Clin Sleep Med. 2024;20(7):1163-1171.
Keywords: PPG; PSG; home monitoring; neurodegeneration; wearable sensor.
© 2024 American Academy of Sleep Medicine.