Design, synthesis, and biological evaluation of novel quinoxaline aryl ethers as anticancer agents

Chem Biol Drug Des. 2024 Mar;103(3):e14502. doi: 10.1111/cbdd.14502.

Abstract

We designed and synthesized thirty novel quinoxaline aryl ethers as anticancer agents, and the structures of final compounds were confirmed with various analytical techniques like Mass, 1 H NMR, 13 C NMR, FTIR, and elemental analyses. The compounds were tested against three cancer cell lines: colon cancer (HCT-116), breast cancer (MDA-MB-231), prostate cancer (DU-145), and one normal cell line: human embryonic kidney cell line (HEK-293). The obtained results indicate that two compounds, FQ and MQ, with IC50 values < 16 μM, were the most active compounds. Molecular docking studies revealed the binding of FQ and MQ molecules in the active site of the c-Met kinase (PDB ID: 3F66, 1.40 Å). Furthermore, QikProp ADME prediction and the MDS analysis preserved those critical docking data of both compounds, FQ and MQ. Western blotting was used to confirm the impact of the compounds FQ and MQ on the inhibition of the c-Met kinase receptor. The apoptosis assays were performed to investigate the mechanism of cell death for the most active compounds, FQ and MQ. The Annexin V/7-AAD assay indicated apoptosis in MDA-MB-231 cells treated with FQ and MQ, with FQ (21.4%) showing a higher efficacy in killing MDA-MB-231 cells than MQ (14.25%). The Caspase 3/7 7-AAD assay further supported these findings, revealing higher percentages of apoptotic cells for FQ-treated MDA-MB-231 cells (41.8%). The results obtained from the apoptosis assay conclude that FQ exhibits better anticancer activity against MDA-MB-231 cells than MQ.

Keywords: anticancer; apoptosis assay; cytotoxicity; molecular docking; molecular dynamics; quinoxalines.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Apoptosis
  • Cell Line, Tumor
  • Cell Proliferation
  • Drug Screening Assays, Antitumor
  • Ethers*
  • HEK293 Cells
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Quinoxalines / pharmacology
  • Structure-Activity Relationship

Substances

  • Ethers
  • Quinoxalines
  • Antineoplastic Agents