The production rate of Λ_{b}^{0} baryons relative to B^{0} mesons in pp collisions at a center-of-mass energy sqrt[s]=13 TeV is measured by the LHCb experiment. The ratio of Λ_{b}^{0} to B^{0} production cross sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e^{+}e^{-} collisions, and increases by a factor of ∼2 with increasing multiplicity. At relatively low transverse momentum, the ratio of Λ_{b}^{0} to B^{0} cross sections is higher than what is measured in e^{+}e^{-} collisions, but converges with the e^{+}e^{-} ratio as the momentum increases. These results imply that the evolution of heavy b quarks into final-state hadrons is influenced by the density of the hadronic environment produced in the collision. Comparisons with several models and implications for the mechanisms enforcing quark confinement are discussed.