Studies on the role of the gut microbiota in the associations between per- and polyfluoroalkyl substance (PFAS) exposure and adverse neurodevelopment are limited. Umbilical cord serum and faeces samples were collected from children, and the Strengths and Difficulties Questionnaire (SDQ) was conducted. Generalized linear models, linear mixed-effects models, multivariate analysis by linear models and microbiome regression-based kernel association tests were used to evaluate the associations among PFAS exposure, the gut microbiota, and neurobehavioural development. Perfluorohexane sulfonic acid (PFHxS) exposure was associated with increased scores for conduct problems and externalizing problems, as well as altered gut microbiota alpha and beta diversity. PFHxS concentrations were associated with higher relative abundances of Enterococcus spp. but lower relative abundances of several short-chain fatty acid-producing genera (e.g., Ruminococcus gauvreauii group spp.). PFHxS exposure was also associated with increased oxidative phosphorylation. Alpha and beta diversity were found significantly associated with conduct problems and externalizing problems. Ruminococcus gauvreauii group spp. abundance was positively correlated with prosocial behavior scores. Increased alpha diversity played a mediating role in the associations of PFHxS exposure with conduct problems. Our results suggest that the gut microbiota might play an important role in PFAS neurotoxicity, which may have implications for PFAS control.
Keywords: Birth cohort; Gut microbiota; Neurobehavior; Per- and polyfluoroalkyl substances.
Copyright © 2024 Elsevier B.V. All rights reserved.