Past dynamics and future prediction of the impacts of land use cover change and climate change on landscape ecological risk across the Mongolian plateau

J Environ Manage. 2024 Mar:355:120365. doi: 10.1016/j.jenvman.2024.120365. Epub 2024 Mar 8.

Abstract

Land use/land cover (LULC) change and climate change are interconnected factors that affect the ecological environment. However, there is a lack of quantification of the impacts of LULC change and climate change on landscape ecological risk under different shared socioeconomic pathways and representative concentration pathways (SSP-RCP) on the Mongolian Plateau (MP). To fill this knowledge gap and understand the current and future challenges facing the MP's land ecological system, we conducted an evaluation and prediction of the effects of LULC change and climate change on landscape ecological risk using the landscape loss index model and random forest method, considering eight SSP-RCP coupling scenarios. Firstly, we selected MCD12Q1 as the optimal LULC product for studying landscape changes on the MP, comparing it with four other LULC products. We analyzed the diverging patterns of LULC change over the past two decades and observed significant differences between Mongolia and Inner Mongolia. The latter experienced more intense and extensive LULC change during this period, despite similar climate changes. Secondly, we assessed changes in landscape ecological risk and identified the main drivers of these changes over the past two decades using a landscape index model and random forest method. The highest-risk zone has gradually expanded, with a 30% increase compared to 2001. Lastly, we investigated different characteristics of LULC change under different scenarios by examining future LULC products simulated by the FLUS model. We also simulated the dynamics of landscape ecological risks under these scenarios and proposed an adaptive development strategy to promote sustainable development in the MP. In terms of the impact of climate change on landscape ecological risk, we found that under the same SSP scenario, increasing RCP emission concentrations significantly increased the areas with high landscape ecological risk while decreasing areas with low risk. By integrating quantitative assessments and scenario-based modeling, our study provides valuable insights for informing sustainable land management and policy decisions in the region.

Keywords: Land use change; Landscape ecological risk; Mongolian plateau; Scenario evaluation.

MeSH terms

  • Climate Change*
  • Conservation of Natural Resources* / methods
  • Ecosystem
  • Forecasting
  • Sustainable Development