Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.
Keywords: PAPS; Sutterella; aryl-sulfate sulfotransferases; detoxification; gut microbial enzymes; human gut microbiome; human sulfotransferases; sulfation; sulfotransferases.