Celiac disease (CeD) is an autoimmune condition triggered by gluten in genetically predisposed individuals, affecting all ages. Intestinal permeability (IP) is crucial in the pathogenesis of CeD and it is primarily governed by tight junctions (TJs) that uphold the intestinal barrier's integrity. The protein zonulin plays a critical role in modulating the permeability of TJs having emerged as a potential non-invasive biomarker to study IP. The importance of this study lies in providing evidence for the usefulness of a non-invasive tool in the study of IP both at baseline and in the follow-up of paediatric patients with CeD. In this single-centre prospective observational study, we explored the correlation between faecal zonulin levels and others faecal and serum biomarkers for monitoring IP in CeD within the paediatric population. We also aimed to establish reference values for faecal zonulin in the paediatric population. We found that faecal zonulin and calprotectin values are higher at the onset of CeD compared with the control population. Specifically, the zonulin levels were 347.5 ng/mL as opposed to 177.7 ng/mL in the control population (p = 0.001), while calprotectin levels were 29.8 μg/g stool compared to 13.9 μg/g stool (p = 0.029). As the duration without gluten consumption increased, a significant reduction in faecal zonulin levels was observed in patients with CeD (348.5 ng/mL vs. 157.1 ng/mL; p = 0.002), along with a decrease in the prevalence of patients with vitamin D insufficiency (88.9% vs. 77.8%). We conclude that faecal zonulin concentrations were higher in the patients with active CeD compared with healthy individuals or those following a gluten-free diet (GFD). The significant decrease in their values over the duration of the GFD suggests the potential use of zonulin as an additional tool in monitoring adherence to a GFD.
Keywords: calprotectin; celiac disease; gluten immunogenic peptides; intestinal permeability; paediatric; tight junctions; zonulin.