Introduction: Psittacosis is a zoonosis caused by Chlamydia psittaci, the clinical manifestations of Psittacosis range from mild illness to fulminant severe pneumonia with multiple organ failure. This study aimed to evaluate the clinical characteristics of Chlamydia psittaci infection diagnosed based on metagenomic next-generation sequencing(mNGS), as well as the risk factors affecting the progress of Chlamydia psittaci infection, in order to improve the effect of therapeutics.
Methods: We retrospectively analyzed the clinical data of patients infected with chlamydia psittaci in the First Affiliated Hospital of Nanchang University from January 2021 to December 2021. The patient's past medical history, clinical manifestations, laboratory examinations, chest CT results, treatment status, and prognosis data were collected. we also investigated both the pathogenic profile characteristics and the lower respiratory tract microbiota of patients with Chlamydia psittaci pneumonia using mNGS.
Results: All cases of Chlamydia psittaci in our research have been confirmed by mNGS. Among 46 cases of Chlamydia psittaci pneumonia, Poultry exposure was reported in 35 cases. In severe cases of Chlamydia psittaci pneumonia, Neutrophils, Procalcitonin (PCT), Lactate Dehydrogenase (LDH), Hydroxybutyrate Dehydrogenase (HBDH), Creatine Kinase Isoenzymes-B (CK-MB) and D-Dimer levels were remarkably higher than that of non-severe cases, except for lymphocytes (all P < 0.05). Chest CT scans showed Bilateral (77.8%), multiple lobar lungs (85.2%), pleural effusions (44.4%) involvement in those suffering from severe Chlamydia psittaci pneumonia, whereas its incidence was 0%, 21.1% and 10.5% in non-severe patients, respectively (P < 0.05). Multivariate analysis revealed that higher lymphocyte concentrations (OR 0.836, 95% CI 0.714-0.962, P = 0.041) were the only protective factor for survival. mNGS results indicated that 41.3% of patients (19/46) had suspected coinfections with a coinfection rate of 84.2% (16/19) in the severe group, much higher than that in the non severe group (p < 0.05). No significantly different profiles of lower respiratory tract microbiota diversity were found between non severe group and severe group.
Conclusion: A history of poultry exposure in patients can serve as an important basis for diagnosing Chlamydia psittaci pneumonia, and patients with severe Chlamydia psittaci pneumonia are more likely to develop elevated inflammatory biomarkers as well as elevated cardiac markers. Higher lymphocyte concentrations are protective factors associated with severe C. psittaci pneumonia. The higher proportion of patients with coinfections in our study supports the use of mNGS for comprehensive early detection of respiratory infections in patients with C. psittaci pneumonia.
Keywords: Chlamydia psittaci; Diagnosis; Lower respiratory tract microbiota; Metagenomic next-generation sequencing; Pneumonia; Therapeutic.
© 2024. The Author(s).