Adding an appropriate amount of copper to feed can promote the growth and development of livestock; however, a large amount of heavy metal copper can accumulate in livestock through the enrichment effect, which poses a serious threat to human health. Traditional Cu2+ detection relies heavily on complex and expensive instruments, such as inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS); thus, convenient and simple rapid detection technologies are urgently needed. In this paper, synthesized copper antigens were used to immunize mice and highly specific anticopper monoclonal antibodies were obtained, which were verified to exhibit high affinity and specificity. Based on the above antibodies, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established for the rapid detection of copper content in pork. The standard inhibition curve of the method was obtained by antigen-antibody working concentration screening, in which the half inhibitory concentration (IC50) was 11.888 ng/mL, the limit of detection (LOD) was 0.841 ng/mL and the correlation coefficient R2 of the curve was 0.998. In the additive recovery experiment, the recovery rate ranged from 90% to 110%, and the coefficient of variation (CV) was less than 10%, indicating that the method achieved high accuracy and precision. Finally, the results of ic-ELISA combined with Bland-Altman analysis showed a high correlation with ICP-MS, and the correlation coefficient (R2) reached 0.990 when the copper concentration was less than 200 ng/mL. Thus, the ic-ELISA method exhibits high reliability.
Keywords: Copper (Cu(2+)) detection; Immunoassay; Meat; Monoclonal Antibody; ic-ELISA.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.