Background: Chimeric antigen receptor (CAR) T-cell therapy is a novel cell therapy for treating non-Hodgkin lymphoma. The development of CAR T-cell therapy has transformed oncology treatment by offering a potential cure. However, due to the high cost of these therapies, and the large number of eligible patients, decision makers are faced with difficult funding decisions. Our objective was to assess the cost-effectiveness of tisagenlecleucel for adults with relapsed/refractory diffuse large B-cell lymphoma in Canada using updated survival data from the recent JULIET trial.
Methods: We developed an individual-simulated discrete event simulation model to assess the costs and quality-adjusted life-years (QALY) of tisagenlecleucel compared with salvage chemotherapy. Survival estimates were obtained from a published clinical trial and retrospective analysis. If patients remained progression free for 5 y, they were assumed to be in long-term remission. Costing and utility data were obtained from reports and published sources. A Canadian health care payer perspective was used, and outcomes were modeled over a lifetime horizon. Costs and outcomes were discounted at 1.5% annually, with costs reported in 2021 Canadian dollars. A probabilistic analysis was used, and model parameters were varied in 1-way sensitivity analyses and scenario analyses.
Results: After we incorporated the latest clinical evidence, tisagenlecleucel led to an additional cost of $503,417 and additional effectiveness of 2.48 QALYs, with an incremental cost-effectiveness ratio of $202,991 compared with salvage chemotherapy. At a willingness-to-pay threshold of $100,000/QALY, tisagenlecleucel had a 0% likelihood of being cost-effective.
Conclusions: At the current drug price, tisagenlecleucel was not found to be a cost-effective option. These results heavily depend on assumptions regarding long-term survival and the price of CAR T. Real-world evidence is needed to reduce uncertainty.
Highlights: For patients with diffuse large B-cell lymphoma who failed 2 or more lines of systemic therapy, CAR T was not found to be a cost-effective treatment option at a willingness-to-pay threshold of $100,000.These results heavily depend on the expected long-term survival. The uncertainty in the model may be improved using real-world evidence reported in the future.
Keywords: chimeric antigen receptor T-cell therapy; cost-effectiveness analysis; tisagenlecleucel.