The application of main group metal complexes in catalytic reactions is of increasing interest. Here we show that the electron-rich, acyclic metallasilylene L'(Cl)GaSiL C (L' = HC[C(Me)NDipp]2, Dipp = 2,6-iPr2C6H3; L = PhC(NtBu)2) acts as a precatalyst in the hydroboration of aldehydes with HBPin. Mechanistic studies with iso-valeraldehyde show that silylene C first reacts with the aldehyde with [2 + 1] cycloaddition in an oxidative addition to the oxasilirane 1, followed by formation of the alkoxysilylene LSiOCH[Ga(Cl)L']CH2CHMe2 (2), whose formation formally results from a reductive elimination reaction at the Si center. Alkoxysilylene 2 represents the active hydroboration catalyst and shows the highest catalytic activity with n-hexanal (reaction time: 40 min, yield: >99%, TOF = 150 h-1) at room temperature with a catalytic load of only 1 mol%. Furthermore, the hydroboration reaction catalysed by alkoxysilylene 2 is a living reaction with good chemoselectivity. Quantum chemical calculations not only provide mechanistic insights into the formation of alkoxysilylene 2 but also show that two completely different hydroboration mechanisms are possible.
This journal is © The Royal Society of Chemistry.