Insights into Molecular Dynamics and Oil Extraction Behavior of the Polymeric Surfactant in a Multilayered Heterogeneous Reservoir

ACS Omega. 2024 Feb 27;9(10):11243-11254. doi: 10.1021/acsomega.3c06390. eCollection 2024 Mar 12.

Abstract

Interlayer heterogeneity, an inevitable and complex challenge during water flooding, seriously constrains the spread of the sweep region and oil recovery enhancement in multilayered heterogeneous reservoirs. To overcome this challenge, a novel polymeric surfactant, having an excellent performance in the reduction of interfacial tension (IFT) and the increase of viscosity of displacing fluid, is applied for enlarging the sweep resonance and increasing the oil washing efficiency. Through the molecular dynamics (MD) simulation, the molecular distributing mechanisms of the polymeric surfactant at the oil-water interface are analyzed to provide the theoretical basis for explaining the microscopic mechanism of oil extraction. To directly reflect the microscopic behavior of oil extraction, multiple transparent sand-packed models are designed to investigate the flowing behavior of different fluids and the extracted mechanisms of the remaining oil in both pore and macroscales. The multilayered heterogeneous reservoirs consisting of high-, moderate-, and low-permeability layers are fabricated to represent a heterogeneous characteristic. The recognition from the visual experiment and MD simulation can study the performance control, the extracting performance of the remaining oil, and the expression of the displacing front from different perspectives. The results from MD simulation demonstrate that the polymeric surfactant can promote the disintegration of the remaining oil and enhance its mobility. The experimental results indicate that the sweep efficiency is restricted by viscous fingering and tongue advance. Through the analysis of mathematical models, the rising mobility ratio and the location of the displacing front have a strong positive relationship with viscous fingering and tongue advance, which can reasonably explain the plugging performance of the polymeric surfactant, greatly improving the sweeping effect of the whole reservoir. Moreover, the Marangoni effect generated by the IFT gradient can induce the transformation of interfacial energy to displacement kinetic energy by the emulsification of the oil-water interface so that the remaining oil in the blind-end pore can be effectively extracted. However, by comparing data from image quantification techniques and production dynamic performance, the sweep efficiency (484%) was significantly greater than that of oil recovery (300%), demonstrating that the expanded sweep effect still plays a dominant role in the extraction of remaining oil after polymeric surfactant flooding. This study provides a novel plugging and effective washing agent that is expected to be an excellent and comprehensive method for solving the problem of low oil recovery in multilayered heterogeneous reservoirs.