Der metallhaltige Wirkstoff BOLD‐100/KP1339 zeigte bereits vielversprechende Resultate in verschiedenen In vitro‐ und In vivo‐Tumormodellen sowie in klinischen Studien. Der detaillierte Wirkmechanismus wurde jedoch noch nicht komplett aufgeklärt. Als entscheidende Wirkstoffeffekte kristallisierten sich kürzlich die Stressinduktion im endoplasmatischen Retikulum (ER) und die damit einhergehende Modulierung von HSPA5 (GRP78) heraus. Das spontane und stabile Addukt zwischen BOLD‐100 und menschlichem Serumalbumin wurde als Immobilisierungsstrategie ausgewählt, um einen chemoproteomischen Ansatz auszuführen, der die ribosomalen Proteine RPL10, RPL24 und den Transkriptionsfaktor GTF2I als potentielle Interaktoren dieser Ru(III)‐Verbindung identifizierten. Dieses Ergebnis wurde mit proteomischen und transkriptomischen Profiling‐Experimenten kombiniert, was die Interpretation einer ribosomalen Beeinträchtigung sowie der Induktion von ER‐Stress unterstützte. Die Bildung von Polyribosomen und begleitende ER‐Schwellungen in behandelten Krebszellen wurden zudem durch TEM‐Messungen bestätigt. Somit scheint eine direkte Wechselwirkung von BOLD‐100 mit ribosomalen Proteinen die ER‐Stressinduktion und die Modulierung von GRP78 in Krebszellen zu begleiten.
Multi‐Omik‐Analysen zeigen, dass der tumorinhibierende Wirkstoffkandidat BOLD‐100/KP1339 gezielt mit den ribosomalen Proteinen RPL10/RPL24 sowie GTF2I wechselwirken könnte. Schwellungen des endoplasmatischen Retikulums (ER) und der Nachweis der Bildung von Polyribosomen durch bildgebende Verfahren weisen darauf hin, dass eine Behandlung mit BOLD‐100 nicht nur die Proliferation hemmt, sondern auch zu einer funktionellen Störung des ER beiträgt.