Plant mediated biosynthesis of Mn3O4 nanostructures and their biomedical applications

Heliyon. 2024 Mar 10;10(6):e27695. doi: 10.1016/j.heliyon.2024.e27695. eCollection 2024 Mar 30.

Abstract

Nanomaterials have drawn significant attention for their biomedical and pharmaceutical applications. In the present study, manganese tetra oxide (Mn3O4) nanoparticles were prepared greenly, and their physicochemical properties were studied. Taxus baccata acetone extract was used as a safely novel precursor for reducing and stabilizing nanoparticles. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) and X-ray diffraction (XRD). The cytotoxicity of Mn3O4 (hausmannite) nanostructures was evaluated against murine macrophage cell line J774-A1 and U87 glioblastoma cancer cells for approximately 72 h. Spherical Mn3O4 nanoparticles with tetragonal spinel structures demonstrated minimal toxicity against normal body cells with CC50 around 876.38 μg mL-1. Moreover, Mn3O4 nanoparticles as well as the combination of antimoniate meglumine and Mn3O4 nanoparticles exhibited maximum mortality in Leishmania major. The synthesized nanominerals displayed a significant inhibitory effect against glioblastoma cancer cells at 100 μg mL-1. The selective cytotoxicity of Mn3O4 nanoparticles indicates that these biogenic agents can be employed simultaneously for diagnostic and therapeutic applications in medical applications.

Keywords: Antileishmanial effects; Gene expression; Hausmannite (Mn3O4) nanostructures; Human glioblastoma cell line U87; Taxus baccata.