Objectives: To investigate the contribution of mechanical obstruction and pulmonary vasoconstriction to pulmonary vascular resistance (PVR) in acute pulmonary embolism (PE) in pigs.
Design: Controlled, animal study.
Setting: Tertiary university hospital, animal research laboratory.
Subjects: Female Danish slaughter pigs (n = 12, ~60 kg).
Interventions: None.
Measurements and main results: PE was induced by infusion of autologous blood clots in pigs. CT pulmonary angiograms were performed at baseline, after PE (first experimental day [PEd0]) and the following 2 days (second experimental day [PEd1] and third experimental day [PEd2]), and clot burden quantified by a modified Qanadli Obstruction Score. Hemodynamics were evaluated with left and right heart catheterization and systemic invasive pressures each day before, under, and after treatment with the pulmonary vasodilators sildenafil (0.1 mg/kg) and oxygen (Fio2 40%). PE increased PVR (baseline vs. PEd0: 178 ± 54 vs. 526 ± 160 dynes; p < 0.0001) and obstruction score (baseline vs. PEd0: 0% vs. 45% ± 13%; p < 0.0001). PVR decreased toward baseline at day 1 (baseline vs. PEd1: 178 ± 54 vs. 219 ± 48; p = 0.16) and day 2 (baseline vs. PEd2: 178 ± 54 vs. 201 ± 50; p = 0.51). Obstruction score decreased only slightly at day 1 (PEd0 vs. PEd1: 45% ± 12% vs. 43% ± 14%; p = 0.04) and remained elevated throughout the study (PEd1 vs. PEd2: 43% ± 14% vs. 42% ± 17%; p = 0.74). Sildenafil and oxygen in combination decreased PVR at day 0 (-284 ± 154 dynes; p = 0.0064) but had no effects at day 1 (-8 ± 27 dynes; p = 0.4827) or day 2 (-18 ± 32 dynes; p = 0.0923).
Conclusions: Pulmonary vasoconstriction, and not mechanical obstruction, was the predominant cause of increased PVR in acute PE in pigs. PVR rapidly declined over the first 2 days after onset despite a persistent mechanical obstruction of the pulmonary circulation from emboli. The findings suggest that treatment with pulmonary vasodilators might only be effective in the acute phase of PE thereby limiting the window for such therapy.
Keywords: computed tomography pulmonary angiography; porcine model; pulmonary embolism; pulmonary vasoconstriction; vasodilatation.
Copyright © 2024 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine.