The lack of selectivity toward the oxygen reduction reaction (ORR) in metal nanoparticles can be linked to the generation of intermediates. This constitutes a crucial constraint on the performance of specific electrochemical devices, such as fuel cells and metal-air batteries. To boost selectivity of metal nanoparticles, a novel methodology that harnesses the unique electrocatalytic properties of polyoxometalates (POM) to scavenge undesired intermediates of the ORR (such as HO2 -) promoting selectivity is proposed. It involves the covalent functionalization of metal nanoparticle's surface with an electrochemically active capping layer containing a new sulfur-functionalized vanadium-based POM (AuNP@POM). To demonstrate this approach, preformed thiolate Au(111) nanoparticles with a relatively poor ORR selectivity are chosen. The dispersion of AuNP@POM on the surface of carbon nanofibers (CNF) enhances oxygen diffusion, and therefore the ORR activity. The resulting electrocatalyst (AuNP@POM/CNF) exhibits superior stability against impurities like methanol and a higher pH tolerance range compared to the standard commercial Pt/C. The work demonstrates for the first time, the use of a POM-based electrochemically active capping layer to switch on the selectivity of poorly selective gold nanoparticles, offering a promising avenue for the preparation of electrocatalyst materials with improved selectivity, performance, and stability for ORR-based devices.
Keywords: carbon nanofibers; covalent functionalization; gold nanoparticles; oxygen reduction reaction; polyoxometalates; selectivity.
© 2024 The Authors. Small Methods published by Wiley‐VCH GmbH.