The Accurate dosage prediction in Radiation Therapy is challenging, prompting a need for precision beyond conventional clinical Treatment Planning Systems (TPS). Monte Carlo-based methods are sought for their superior accuracy. The aim of this study is to compare dose distributions between the ACUROS algorithm and the GATE platform in various tissue densities and field sizes, focusing on smaller fields. This study was initiated with a homogeneous validation of the TrueBeam STX system, using measurements obtained from the Centre Hospitalier Interregional Edith Cavell (CHIREC) in Brussels. The validation compared dosimetric functions (Percentage Depth Dose (PDD), Dose profile (DP) and Collimator scatter fraction (CSF)) employing the GAMMA index with a 2% / 2 mm criterion tolerance. Following this, heterogeneous studies examined dose distributions between the ACUROS algorithm and the GATE platform in various tissue densities and field sizes, with a specific focus on smaller fields. Simulations were conducted using both platforms on chest phantoms with heterogeneous slabs representing bone, lung, and heart, each housing a central tumor. The impact of electronic equilibrium on tumors for different small field sizes was evaluated. Results showed a remarkable 99% agreement between measurements and GATE calculations in the homogeneous validation of the TrueBeam STX system. However, in heterogeneous studies, ACUROS consistently overestimated lung doses by up to 8% compared to GATE simulation, especially evident with a flattening filter and smaller beam sizes at density interfaces. This highlights significant dose estimation discrepancies between ACUROS and GATE, emphasizing the need for precise calculations. The findings support exploring Monte Carlo-based methods for enhanced accuracy in Radiation Therapy treatment planning.
Keywords: ACUROS; GATE; cubic tumor; heterogeneity; radiotherapy; trueBeam.
© 2024 IOP Publishing Ltd.