Background: Desmoplastic melanoma (DM) is a rare melanoma subtype characterized by dense fibrous stroma, a propensity for local recurrence, and a high response rate to programmed cell death protein 1 (PD-1) blockade. Occult sentinel lymph node positivity is significantly lower in both pure and mixed DM than in conventional melanoma, underscoring the need for better prognostic biomarkers to inform therapeutic strategies.
Methods: We assembled a tissue microarray comprising various cores of tumor, stroma, and lymphoid aggregates from 45 patients with histologically confirmed DM diagnosed between 1989 and 2018. Using a panel of 62 validated immune-oncology markers, we performed digital spatial profiling using the NanoString GeoMx platform and quantified expression in three tissue compartments defined by fluorescence colocalization (tumor (S100+/PMEL+/SYTO+), leukocytes (CD45+/SYTO+), and non-immune stroma (S100-/PMEL-/CD45-/SYTO+)).
Results: We observed higher expression of immune checkpoints (lymphocyte-activation gene 3 [LAG-3] and cytotoxic T-lymphocyte associated protein-4 [CTLA-4]) and cancer-associated fibroblast (CAF) markers (smooth muscle actin (SMA)) in the tumor compartments of pure DMs than mixed DMs. When comparing lymphoid aggregates (LA) to non-LA tumor cores, LAs were more enriched with CD20+B cells, but non-LA intratumoral leukocytes were more enriched with macrophage/monocytic markers (CD163, CD68, CD14) and had higher LAG-3 and CTLA-4 expression levels. Higher intratumoral PD-1 and LA-based LAG-3 expression appear to be associated with worse survival.
Conclusions: Our proteomic analysis reveals an intra-tumoral population of SMA+CAFs enriched in pure DM. Additionally, increased expressions of immune checkpoints (LAG-3 and PD-1) in LA and within tumor were associated with poorer prognosis. These findings might have therapeutic implications and help guide treatment selection in addition to informing potential prognostic significance.
Keywords: immunotherapy; melanoma; programmed cell death 1 receptor; tumor biomarkers; tumor microenvironment.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.