Composite topological heterostructures, wherein topologically protected states are electronically tuned due to their proximity to other matter, are key avenues for exploring emergent physical phenomena. Particularly, pairing a topological material with a superconductor such as Pb is a promising means for generating a topological superconducting phase with exotic Majorana quasiparticles, but oft-neglected is the emergence of bulklike spin-polarized states that are quite relevant to applications. Using high-resolution photoemission spectroscopy and first-principles calculations, we report the emergence of bulk-like spin-polarized topological quantum well states with long coherence lengths in Pb films grown on the topological semimetal Sb. The results establish Pb/Sb heterostructures as topological superconductor candidates and advance the current understanding of topological coupling effects required for realizing emergent physics and for designing advanced spintronic device architectures.
Keywords: emergent electronic structure; thin-film heterostructures; topological proximity coupling; topological quantum well states; topological superconductivity.