Recent advancements in image-based pooled CRISPR screening have facilitated the mapping of diverse genotype-phenotype associations within mammalian cells. However, the rapid enrichment of cells based on morphological information continues to pose a challenge, constraining the capacity for large-scale gene perturbation screening across diverse high-content cellular phenotypes. In this study, we demonstrate the applicability of multimodal ghost cytometry-based cell sorting, including both fluorescent and label-free high-content phenotypes, for rapid pooled CRISPR screening within vast cell populations. Using the high-content cell sorter operating in fluorescence mode, we successfully executed kinase-specific CRISPR screening targeting genes influencing the nuclear translocation of RelA. Furthermore, using the multiparametric, label-free mode, we performed large-scale screening to identify genes involved in macrophage polarization. Notably, the label-free platform can enrich target phenotypes without requiring invasive staining, preserving untouched cells for downstream assays and expanding the potential for screening cellular phenotypes even when suitable markers are absent.
Keywords: CP: biotechnology; CP: imaging; cellular phenotyping; flow cytometry; high-content cell analysis; image-based cell sorter; label-free cell analysis; machine learning; pooled CRISPR screening.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.