The number and position of unsaturated bonds in aliphatic aldehydes affect meat flavorings system: Insights on initial Maillard reaction stage and meat flavor formation from thiazolidine derivatives

Curr Res Food Sci. 2024 Mar 12:8:100719. doi: 10.1016/j.crfs.2024.100719. eCollection 2024.

Abstract

Nonanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and (E,Z)-2,6-nonadienal were used to study the effect of number and position of the unsaturated bond in aliphatic aldehydes on meat flavorings. Cysteine-Amadori and thiazolidine derivatives were synthesized, identified by UPLC-TOF/MS and NMR, and quantitatively by UPLC-MS/MS. The polyunsaturated aldehydes exhibited higher inhibition than monounsaturated aldehydes, and monounsaturated aldehydes exhibited higher inhibition than saturated aldehydes, mainly manifested by the inhibition of the cysteine-Amadori formation and acceleration of the thiazolidine derivatives formation. The effect of unsaturated bonds position in aliphatic aldehydes on the initial Maillard reaction stage was similar. The cysteine played an important role in catalyzing the reaction of aliphatic aldehydes. A total of 109 volatile compounds derived by heating prepared thiazolidine derivatives degradation were detected by GC-MS. Formation pathways of volatile compounds were proposed by retro-aldol, oxidation, etc. Particularly, a route to form thiazole by the decarboxylation reaction of thiazolidine derivatives which derivatives from formaldehyde reacting with cysteine was proposed.

Keywords: Aliphatic aldehydes; Flavor formation; Intermediates; Maillard reaction; Unsaturated bond.