Background: Gynecological cancers are a significant public health concern, accounting for 40% of all cancer incidence and 30% of deaths in women. 5-Fluorouracil (5-FU) can be used with chemotherapy to improve treatment in advanced-stage gynecological cancer. Mesoporous silica nanoparticles (MSNs) can improve drug effectiveness and reduce toxicity. Folic acid can target folate receptors in epithelial malignancies like ovarian and cervical cancer.
Methods: The mixture of MSN-NH2 was synthesized by dissolving N-lauroylsarcosine sodium in a water-ethanol mixture, adding APTES and TEOS, and heating at 80 °C for 18 h, before being fully characterized. The drug is loaded into a 5-FU solution and functionalized with folate. The drug release mechanism, as well as ex vivo intestinal permeation from MSN-NH2 formulations, was tested. The cell viability study of the nanoparticles was evaluated in various cancer cell lines, and the cellular uptake was measured indirectly using HPLC.
Results: The study analyzed the amine content, propylamine loading, and drug loading capacity of MSN-NH2 nanoparticles. It found that the loading of propylamine was around 0.733 mmol/g, and the surface density was 0.81 molecules/nm. The study also showed that the surface decoration of MSN-NH2 with folic acid was successfully achieved. The release rate of 5-FU from MSN-NH2 was slow and controlled, with a slower rate at pH 5.5. The study found that the amin surface functionalization of MSN-NH2 nanoparticles can reduce potential toxicity in ovarian and cervical cancer cells.
Conclusions: Based on the results, the encapsulation of 5-FU and functionalization of MSN-NH2 with folic acid can serve as potential carriers for 5-FU in treating gynecological cancer.
Keywords: 5-fluorouracil; cytotoxicity; folic acid; in-vitro; mesoporous silica; nanoparticle.