From gene to mechanics: a comprehensive insight into the mechanobiology of LMNA mutations in cardiomyopathy

Cell Commun Signal. 2024 Mar 27;22(1):197. doi: 10.1186/s12964-024-01546-5.

Abstract

Severe cardiac remodeling leading to heart failure in individuals harboring pathogenic LMNA variants, known as cardiolaminopathy, poses a significant clinical challenge. Currently, there is no effective treatment for lamin-related diseases. Exploring the intricate molecular landscape underlying this condition, with a specific focus on abnormal mechanotransduction, will propel our understanding of cardiolaminopathy. The LMNA gene undergoes alternative splicing to create A-type lamins, a part of the intermediate filament protein family. A-type lamins are located underneath the nuclear envelope, and given their direct interaction with chromatin, they serve as mechanosensory of the cell by interacting with the cytoskeleton and safeguarding the transcriptional program of cells. Nucleated cells in the cardiovascular system depend on precise mechanical cues for proper function and adaptation to stress. Mechanosensitive signaling pathways are essential in regulating mechanotransduction. They play a pivotal role in various molecular and cellular processes and commence numerous downstream effects, leading to transcriptional activation of target genes involved in proliferation, migration, and (anti-)apoptosis. Most pathways are known to be regulated by kinases, and this area remains largely understudied in cardiomyopathies.Heart failure is linked to disrupted mechanotransduction, where LMNA mutations affect nuclear integrity, impacting the response to extracellular matrix signals and the environment. The Hippo pathway, anchored by YAP1/WWTR1, emerges as a central player by orchestrating cellular responses to mechanical signals. However, the involvement of Hippo and YAP1/WWTR1 in cardiolaminopathy is unclear and likely mutation- and tissue-specific, warranting further investigation. Here, we highlight the involvement of multiple signaling pathways in mechanotransduction in cardiolaminopathy. We delve into (non-)canonical functions of key signaling components, which may hold critical clues for understanding disease pathogenesis. In summary, we comprehensively examine the mechanobiology of A-type lamins, the role of mechanosensitive signaling pathways, and their intricate interplay in the pathogenesis of cardiolaminopathy. A better understanding of these mechanisms is paramount for developing targeted therapies and interventions for individuals afflicted with this debilitating cardiac condition. Prior studies overlooked accurate gene nomenclature in protein and pathway names. Our review addresses this gap, ensuring precision by aligning names with correct gene nomenclature.

Keywords: Cardiolaminopathy; Dynamic reciprocity; Kinase activity; Mechanobiochemistry; Mechanotransduction pathways.

Plain language summary

Mutations in the A-type lamin gene (LMNA) can cause a laminopathy. A specific manifestation of this disease leads to cardiolaminopathy, a serious heart condition. The lamin network, located at the inner nuclear membrane, is a central player in transforming forces within cells. As cells move and function, they rely on the ability to sense and respond to these forces, a process named mechanosensing and -response. This review provides an overview of the key molecular pathways involved in the development of heart failure. The molecular mechanisms underlying LMNA cardiomyopathy are poorly understood because the interaction between the signaling pathways is challenging to elucidate. Deciphering these pathways is key to understanding the underlying mechanisms of disease and finding novel targets to alter the pathways and lessen the symptoms of diseases.

Publication types

  • Review

MeSH terms

  • Biophysics
  • Cardiomyopathies* / genetics
  • Cardiomyopathies* / metabolism
  • Heart Failure* / genetics
  • Humans
  • Lamin Type A / genetics
  • Lamin Type A / metabolism
  • Mechanotransduction, Cellular
  • Mutation / genetics

Substances

  • Lamin Type A
  • LMNA protein, human