Sleep timing is controlled by intrinsic homeostatic and circadian components. The circadian component controls the chronotype, which is defined by the propensity to sleep at a particular clock time. However, sleep timing can be significantly affected by external factors such as the morning alarm clock. In this study, we analysed the timing of deep and REM sleep as well as the composition of REM sleep using Fitbit sleep staging in young healthy adults (n = 59) under real-life conditions. Sleep stage percentiles were correlated with the timing of total sleep in time after sleep onset for the homeostatic component and in clock time for the circadian component. Regarding the circadian component, the phase of total sleep is most strongly associated with the phases of early deep sleep and REM sleep. Furthermore, a stronger phase relationship between deep and REM sleep with total sleep is associated with greater consolidation of REM sleep. Chronotype-dependent sleep loss correlates negatively with the strength of the phase relationship between deep sleep and total sleep. In conclusion, the interaction of the circadian component of sleep timing with the timing of sleep stages is associated with REM sleep quality. In particular, the interaction of the circadian component of sleep timing with deep sleep seems to be more vulnerable to external factors.
Keywords: REM sleep fragmentation; chronotype; sleep architecture; sleep composition; sleep hygiene; sleep quality; wearables.