The early detection of cognitive decline in Parkinson's disease is important for providing drug therapy and non-pharmacological management. The circulating microRNAs present in plasma are promising biomarkers of PD with dementia (PDD) due to their critical roles in synaptic plasticity and the regulation of neurodegeneration-associated proteins. In this study, we aimed to identify plasma microRNAs that may differentiate PD with or without cognitive impairment. Global microRNA expression was obtained from a discovery set of 123 participants who were divided into four groups, namely normal controls (HC), PD with no dementia (PDND), PD with mild cognitive impairment (PD-MCI), and PDD, using next-generation sequencing. The BOLD selector was used for microRNA candidate selection. Six miRNAs, namely miR-203a-3p, miR-626, miR-662, miR-3182, miR-4274, and miR-4295, were clustered as potential candidates for use in identifying PDND from PD-MCI. Another independent cohort of 120 participants was further recruited in a validation step in order to detect candidate microRNAs via droplet digital PCR (ddPCR), which was used for its high sensitivity in detecting low miRNA concentrations. Our results show that the ratio of miR-203a-3p/miR-16-5p, in which miR-16-5p was used as a reference control miRNA, was significantly increased in PDD compared to that seen in PD-MCI and PDND individually, and was negatively correlated with the MoCA scores (r = -0.237, p = 0.024) in patients with PD. However, there was no significant difference in the ratio of miR-203a-3p/miR-16-5p between HC and PDND, PD-MCI, or PDD individually. The ROC curve of the logistic regression model, factoring in the variables of age, the ratio of miR-203a-3p/miR-16-5p, and the UPDRS III score, demonstrated an AUC of 0.883. Our findings suggest that the ratio of miR-203a-3p/miR-16-5p, used with age and motor score, could be a predictor of dementia among PD patients.
Keywords: Parkinson’s disease; cognitive decline; droplet digital PCR; microRNA; plasma biomarker.