Tensile and Interfacial Mechanical Properties for Single Aramid III Fibers under Dynamic Loading

Polymers (Basel). 2024 Mar 13;16(6):804. doi: 10.3390/polym16060804.

Abstract

In this study, the traditional mini split Hopkinson tension bar (SHTB) was enhanced for the dynamic mechanical performance testing of single fiber/resin interface of composites. Single Aramid III fibers were modified using a polyamine modification treatment. Quasi-static and dynamic tensile tests of modified single Aramid III fibers were conducted using an electronic tensile testing machine and mini SHTB. The test results indicated that the surface modification employing the Catechol-Tetraethylenepentamine (Cat-TEPA) approach had a negligible effect on the tensile mechanical properties of single Aramid III fibers. The microdroplet method was introduced to measure the dynamic interfacial shear strength (IFSS) of Aramid III fiber/waterborne polyurethane resin using a mini SHTB. The dynamic shear test results revealed an increase in the dynamic shear strength of the modified Aramid III fiber/resin interface from 36.16 MPa to 41.51 MPa. Furthermore, the Scanning Electron Microscope (SEM) photography of the modified single Aramid III fiber after debonding exhibited regular grid structures on the debonding area, which can prevent debonding between the single fiber and the microdroplet, thereby enhancing interfacial shear performance.

Keywords: Aramid III; IFSS; dynamic mechanical property; failure morphology; mini SHTB; single fiber; surface modification.

Grants and funding

This research received no external funding.