Here, we characterized the independent role of soil microbiomes (bacterial and fungal communities) in determining the flavor chemistry of harvested mustard seed (Brassica juncea). Given the known impacts of soil microbial communities on various plant characteristics, we hypothesized that differences in rhizosphere microbiomes would result in differences in seed flavor chemistry (glucosinolate content). In a glasshouse study, we introduced distinct soil microbial communities to mustard plants growing in an otherwise consistent environment. At the end of the plant life cycle, we characterized the rhizosphere and root microbiomes and harvested produced mustard seeds for chemical characterization. Specifically, we measured the concentrations of glucosinolates, secondary metabolites known to create spicy and bitter flavors. We examined associations between rhizosphere microbial taxa or genes and seed flavor chemistry. We identified links between the rhizosphere microbial community composition and the concentration of the main glucosinolate, allyl, in seeds. We further identified specific rhizosphere taxa predictive of seed allyl concentration and identified bacterial functional genes, namely genes for sulfur metabolism, which could partly explain the observed associations. Together, this work offers insight into the potential influence of the belowground microbiome on the flavor of harvested crops.
Keywords: flavor; glucosinolates; mustard (Brassica); plant–microbe interactions; rhizosphere microbiome.
© 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.