Quality of Large Language Model Responses to Radiation Oncology Patient Care Questions

JAMA Netw Open. 2024 Apr 1;7(4):e244630. doi: 10.1001/jamanetworkopen.2024.4630.

Abstract

Importance: Artificial intelligence (AI) large language models (LLMs) demonstrate potential in simulating human-like dialogue. Their efficacy in accurate patient-clinician communication within radiation oncology has yet to be explored.

Objective: To determine an LLM's quality of responses to radiation oncology patient care questions using both domain-specific expertise and domain-agnostic metrics.

Design, setting, and participants: This cross-sectional study retrieved questions and answers from websites (accessed February 1 to March 20, 2023) affiliated with the National Cancer Institute and the Radiological Society of North America. These questions were used as queries for an AI LLM, ChatGPT version 3.5 (accessed February 20 to April 20, 2023), to prompt LLM-generated responses. Three radiation oncologists and 3 radiation physicists ranked the LLM-generated responses for relative factual correctness, relative completeness, and relative conciseness compared with online expert answers. Statistical analysis was performed from July to October 2023.

Main outcomes and measures: The LLM's responses were ranked by experts using domain-specific metrics such as relative correctness, conciseness, completeness, and potential harm compared with online expert answers on a 5-point Likert scale. Domain-agnostic metrics encompassing cosine similarity scores, readability scores, word count, lexicon, and syllable counts were computed as independent quality checks for LLM-generated responses.

Results: Of the 115 radiation oncology questions retrieved from 4 professional society websites, the LLM performed the same or better in 108 responses (94%) for relative correctness, 89 responses (77%) for completeness, and 105 responses (91%) for conciseness compared with expert answers. Only 2 LLM responses were ranked as having potential harm. The mean (SD) readability consensus score for expert answers was 10.63 (3.17) vs 13.64 (2.22) for LLM answers (P < .001), indicating 10th grade and college reading levels, respectively. The mean (SD) number of syllables was 327.35 (277.15) for expert vs 376.21 (107.89) for LLM answers (P = .07), the mean (SD) word count was 226.33 (191.92) for expert vs 246.26 (69.36) for LLM answers (P = .27), and the mean (SD) lexicon score was 200.15 (171.28) for expert vs 219.10 (61.59) for LLM answers (P = .24).

Conclusions and relevance: In this cross-sectional study, the LLM generated accurate, comprehensive, and concise responses with minimal risk of harm, using language similar to human experts but at a higher reading level. These findings suggest the LLM's potential, with some retraining, as a valuable resource for patient queries in radiation oncology and other medical fields.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence
  • Cross-Sectional Studies
  • Humans
  • Language
  • Patient Care
  • Radiation Oncology*