Spatial habitat suitability prediction of essential oil wild plants on Indonesia's degraded lands

PeerJ. 2024 Apr 1:12:e17210. doi: 10.7717/peerj.17210. eCollection 2024.

Abstract

Background: Essential oils are natural products of aromatic plants with numerous uses. Essential oils have been traded worldwide and utilized in various industries. Indonesia is the sixth largest essential oil producing country, but land degradation is a risk to the continuing extraction and utilization of natural products. Production of essential oil plants on degraded lands is a potential strategy to mitigate this risk. This study aimed to identify degraded lands in Indonesia that could be suitable habitats for five wild native essential oil producing plants, namely Acronychia pedunculata (L.) Miq., Baeckea frutescens L., Cynometra cauliflora L., Magnolia montana (Blume) Figlar, and Magnolia sumatrana var. glauca (Blume) Figlar & Noot using various species distribution models.

Methods: The habitat suitability of these species was predicted by comparing ten species distribution models, including Bioclim, classification and regression trees (CART), flexible discriminant analysis (FDA), Maxlike, boosted regression trees (BRT), multivariate adaptive regression splines (MARS), generalized linear models (GLM), Ranger, support vector machine (SVM), and Random Forests (RF). Bioclimatic, topographic and soil variables were used as the predictors of the model habitat suitability. The models were evaluated according to their AUC and TSS metrics. Model selection was based on ranking performance. The total suitable area for five native essential oil producing plants in Indonesia's degraded lands was derived by overlaying the models with degraded land locations.

Results: The habitat suitability model for these species was well predicted with an AUC value >0.8 and a TSS value >0.7. The most important predictor variables affecting the habitat suitability of these species are mean temperature of wettest quarter, precipitation seasonality, precipitation of warmest quarter, precipitation of coldest quarter, cation exchange capacity, nitrogen, sand, and soil organic carbon. C. cauliflora has the largest predicted suitable area, followed by M. montana, B. frutescens, M. sumatrana var. glauca, and A. pedunculata. The overlapping area between predictive habitat suitability and degraded lands indicates that the majority of degraded lands in Indonesia's forest areas are suitable for those species.

Conclusion: The degraded lands predicted as suitable habitats for five native essential oil producing plants were widely spread throughout Indonesia, mostly in its main islands. These findings can be used by the Indonesian Government for evaluating policies for degraded land utilization and restorations that can enhance the lands' productivity.

Keywords: Degraded lands; Essential oils; Habitat suitability; Native plants; Species distribution models.

MeSH terms

  • Biological Products*
  • Carbon
  • Ecosystem
  • Indonesia
  • Oils, Volatile*
  • Plants
  • Soil

Substances

  • Soil
  • Carbon
  • Biological Products
  • Oils, Volatile

Associated data

  • figshare/10.6084/m9.figshare.25211531.v1

Grants and funding

The authors received no funding for this work.