Using milk mid-infrared spectroscopy to estimate cow-level nitrogen efficiency metrics

J Dairy Sci. 2024 Aug;107(8):5805-5816. doi: 10.3168/jds.2023-24438. Epub 2024 Apr 4.

Abstract

Minimizing pollution from the dairy sector is paramount; one potential cause of such pollution is excess nitrogen. Nitrogen pollution contributes to a deterioration in water quality as well as an increase in both eutrophication and greenhouse gases. It is therefore essential to minimize the loss of nitrogen from the sector, including excretion from the cow. Breeding programs are one potential strategy to improve the efficiency with which nitrogen is used by dairy cows, but they rely on routine access to individual cow information on how efficiently each cow uses the nitrogen it ingests. A total of 3,497 test-day records for individual-cow nitrogen efficiency metrics along with milk yield and the associated milk spectra were used to investigate the ability of milk infrared spectral data to predict these nitrogen traits; both traditional partial least squares regression and neural networks were used in the prediction process. The data originated from 4 farms across 11 yr. The nitrogen traits investigated were nitrogen intake, nitrogen use efficiency, and nitrogen balance. Both nitrogen use efficiency and nitrogen balance were calculated considering nitrogen intake, nitrogen in milk, nitrogen in the conceptus, nitrogen used for the growth, nitrogen stored in body reserves, and nitrogen mobilized from body reserves. Irrespective of the nitrogen-related trait being investigated, the best predictions from 4-fold cross validation were achieved using neural networks that considered both the morning and evening milk spectra along with milk yield, parity, and DIM in the prediction process. The coefficient of determination in the cross validation was 0.61, 0.74, and 0.58 for nitrogen intake, nitrogen use efficiency, and nitrogen balance, respectively. In a separate series of validation approaches, the calibration and validation was stratified by herd (n = 4) and separately by year. For these scenarios, partial least squares regression generated more accurate predictions compared with neural networks; the coefficient of determination was always lower than 0.29 and 0.60 when validation was stratified by herd and year, respectively. Therefore, if the variability of the data being predicted in the validation datasets is similar to that in the data used to develop the predictions, then nitrogen-related traits can be predicted with reasonable accuracy. In contrast, where the variability of the data that exists in the validation dataset is poorly represented in the calibration dataset, then poor predictions will ensue.

Keywords: milk spectra; neural networks; nitrogen use efficiency; prediction.

MeSH terms

  • Animals
  • Cattle
  • Female
  • Lactation*
  • Milk* / chemistry
  • Nitrogen* / analysis
  • Spectrophotometry, Infrared / veterinary

Substances

  • Nitrogen