Microplastics (MPs) vary in shape and surface characteristics in the environment. The attachment of MPs to surfaces can be studied using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. However, this theory does not account for the shape MPs. Therefore, we investigated the attachment of spherical, pear-shaped, and peanut-shaped polystyrene MPs to quartz sand in NaCl and CaCl2 solutions using batch tests. The attachment of MPs to quartz sand was quantified using the attachment efficiency (alpha). Subsequently, alpha behaviors were interpreted using energy barriers (EBs) and interaction minima obtained from extended DLVO calculations, which were performed using an equivalent sphere model (ESM) and a newly developed equivalent Cassini model (ECM) to account for the shape of the MPs. The ESM failed to interpret the alpha behavior of the three MP shapes because it predicted high EBs and shallow minima. The alpha values for spherical MPs (0.62-1.00 in NaCl and 0.48-0.96 in CaCl2) were higher than those for pear- and peanut-shaped MPs (0.01-0.63 in NaCl and 0.02-0.46 in CaCl2, and 0.01-0.59 in NaCl and 0.02-0.40 in CaCl2, respectively). Conversely, the ECM could interpret the alpha behavior of pear- and peanut-shaped MPs either by changes in EBs or interaction minima as a function of orientation angles and electrolyte ionic strength. Therefore, the particle shape must be considered to improve the attachment analyses.
Keywords: Attachment efficiency; Cassini oval; Microplastic; Shape; XDLVO.
Copyright © 2024 Elsevier B.V. All rights reserved.