To protect future high-tech metal demand, a selective and efficient recovery method for tantalum from a tantalum-rich e-waste component sample was developed. Ultrasound-assisted digestion of the component sample was optimized, and the highest dissolution rate was achieved using a mixture of 8 mol/L H2SO4 and HF at a temperature of 60 °C. The determined amount of tantalum was as high as 11 000 ± 1000 mg/kg, which results in a high potential for recyclable tantalum. The other major elements of this complex e-waste fraction were silicon, iron, aluminum, and tin. Efficient recovery of tantalum from the leachate was performed using the zeolite material ZSM-5. Extremely high selectivity and a recovery rate of over 98% were obtained. In terms of adsorption efficiency, selectivity, and durability of the material, optimal adsorption was obtained using the diluted sample at 0.5 mol/L of H2SO4. The adsorption capacity of ZSM-5 for tantalum was determined to be 10.5 ± 0.6 mg/g, and tantalum was selectively eluted with 1:4 diluted ethanolamine with a yield of 87.2 ± 1.5%.
© 2024 The Authors. Published by American Chemical Society.