An EEG Signature of MCH Neuron Activities Predicts Cocaine Seeking

bioRxiv [Preprint]. 2024 Mar 29:2024.03.27.586887. doi: 10.1101/2024.03.27.586887.

Abstract

Background: Identifying biomarkers that predict substance use disorder (SUD) propensity may better strategize anti-addiction treatment. The melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) critically mediates interactions between sleep and substance use; however, their activities are largely obscured in surface electroencephalogram (EEG) measures, hindering the development of biomarkers.

Methods: Surface EEG signals and real-time Ca2+ activities of LH MCH neurons (Ca2+MCH) were simultaneously recorded in male and female adult rats. Mathematical modeling and machine learning were then applied to predict Ca2+MCH using EEG derivatives. The robustness of the predictions was tested across sex and treatment conditions. Finally, features extracted from the EEG-predicted Ca2+MCH either before or after cocaine experience were used to predict future drug-seeking behaviors.

Results: An EEG waveform derivative - a modified theta-to-delta ratio (EEG Ratio) - accurately tracks real-time Ca2+MCH in rats. The prediction was robust during rapid eye movement sleep (REMS), persisted through REMS manipulations, wakefulness, circadian phases, and was consistent across sex. Moreover, cocaine self-administration and long-term withdrawal altered EEG Ratio suggesting shortening and circadian redistribution of synchronous MCH neuron activities. In addition, features of EEG Ratio indicative of prolonged synchronous MCH neuron activities predicted lower subsequent cocaine seeking. EEG Ratio also exhibited advantages over conventional REMS measures for the predictions.

Conclusions: The identified EEG Ratio may serve as a non-invasive measure for assessing MCH neuron activities in vivo and evaluating REMS; it may also serve as a potential biomarker predicting drug use propensity.

Keywords: EEG; MCH; REM sleep; biomarker; cocaine.

Publication types

  • Preprint