Convolutional neural network-based classification of glaucoma using optic radiation tissue properties

Commun Med (Lond). 2024 Apr 11;4(1):72. doi: 10.1038/s43856-024-00496-w.

Abstract

Background: Sensory changes due to aging or disease can impact brain tissue. This study aims to investigate the link between glaucoma, a leading cause of blindness, and alterations in brain connections.

Methods: We analyzed diffusion MRI measurements of white matter tissue in a large group, consisting of 905 glaucoma patients (aged 49-80) and 5292 healthy individuals (aged 45-80) from the UK Biobank. Confounds due to group differences were mitigated by matching a sub-sample of controls to glaucoma subjects. We compared classification of glaucoma using convolutional neural networks (CNNs) focusing on the optic radiations, which are the primary visual connection to the cortex, against those analyzing non-visual brain connections. As a control, we evaluated the performance of regularized linear regression models.

Results: We showed that CNNs using information from the optic radiations exhibited higher accuracy in classifying subjects with glaucoma when contrasted with CNNs relying on information from non-visual brain connections. Regularized linear regression models were also tested, and showed significantly weaker classification performance. Additionally, the CNN was unable to generalize to the classification of age-group or of age-related macular degeneration.

Conclusions: Our findings indicate a distinct and potentially non-linear signature of glaucoma in the tissue properties of optic radiations. This study enhances our understanding of how glaucoma affects brain tissue and opens avenues for further research into how diseases that affect sensory input may also affect brain aging.

Plain language summary

In this study, we explored the relationship between glaucoma, the most common cause of blindness, and changes within the brain. We used data from diffusion MRI, a measurement method which assesses the properties of brain connections. We examined 905 individuals with glaucoma alongside 5292 healthy people. We refined the test cohort to be closely matched in age, sex, ethnicity, and socioeconomic backgrounds. The use of deep learning neural networks allowed accurate detection of glaucoma by focusing on the tissue properties of the optic radiations, a major brain pathway that transmits visual information, rather than other brain pathways used for comparison. Our work provides additional evidence that brain connections may age differently based on varying sensory inputs.