In this study, a two-stage cascade extraction process utilizing pulsed electric fields (PEF) (3 kV/cm, 10 kJ/kg) for initial extraction, followed by ultrasound (US) (200 W, 20 min)-assisted extraction (UAE) in a 50% (v/v) ethanol-water mixture (T = 50 °C, t = 60 min), was designed for the efficient release of valuable intracellular compounds from industrial cherry pomace. The extracted compounds were evaluated for total phenolic content (TPC), flavonoid content (FC), total anthocyanin content (TAC), and antioxidant activity (FRAP), and were compared with conventional solid-liquid extraction (SLE). Results showed that the highest release of bioactive compounds occurred in the first stage, which was attributed to the impact of PEF pre-treatment, resulting in significant increases in TPC (79%), FC (79%), TAC (83%), and FRAP values (80%) of the total content observed in the post-cascade PEF-UAE process. The integration of UAE into the cascade process further augmented the extraction efficiency, yielding 21%, 49%, 56%, and 26% increases for TPC, FC, TAC, and FRAP, respectively, as compared to extracts obtained through a second-stage conventional SLE. HPLC analysis identified neochlorogenic acid, 4-p-coumaroylquinic, and cyanidin-3-O-rutinoside as the predominant phenolic compounds in both untreated and cascade-treated cherry pomace extracts, and no degradation of the specific compounds occurred upon PEF and US application. SEM analysis revealed microstructural changes in cherry pomace induced by PEF and UAE treatments, enhancing the porosity and facilitating the extraction process. The study suggests the efficiency of the proposed cascade PEF-UAE extraction approach for phenolic compounds from industrial cherry pomace with potential applications to other plant-based biomasses.
Keywords: cascade approach; cherry pomace; phenolic compounds; pulsed electric fields; ultrasounds.