The source of protein in a persons diet affects their total life expectancy. However, the mechanisms by which dietary protein sources differentially impact human health and life expectancy are poorly understood. Dietary choices have major impacts on the composition and function of the intestinal microbiota that ultimately mediate host health. This raises the possibility that health outcomes based on dietary protein sources might be driven by interactions between dietary protein and the gut microbiota. In this study, we determine the effects of seven different sources of dietary protein on the gut microbiota in mice. We apply an integrated metagenomics-metaproteomics approach to simultaneously investigate the effects of these dietary protein sources on the gut microbiotas composition and function. The protein abundances measured by metaproteomics can provide microbial species abundances, and evidence for the phenotype of microbiota members on the molecular level because measured proteins allow us to infer the metabolic and physiological processes used by a microbial community. We showed that dietary protein source significantly altered the species composition and overall function of the gut microbiota. Different dietary protein sources led to changes in the abundance of microbial amino acid degrading proteins and proteins involved in the degradation of glycosylations on dietary protein. In particular, brown rice and egg white protein increased the abundance of amino acid degrading enzymes and egg white protein increased the abundance of bacteria and proteins usually associated with the degradation of the intestinal mucus barrier. These results show that dietary protein source can change the gut microbiotas metabolism, which could have major implications in the context of gut microbiota mediated diseases.