For most of their lifespan, the probability of death for many animal species increases with age. Gompertz law states that this increase is exponential. In this work, we have compared previously published data on the survival kinetics of different lines of progeric mice. Visual analysis showed that in six lines of these rapidly aging mutants, the probability of death did not strictly depend on age. In contrast, ten lines of progeric mice have survival curves similar to those of the control animals, that is, in agreement with Gompertz law, similar to the shape of an exponential curve upside down. Interestingly, these ten mutations cause completely different cell malfunctions. We speculate that what these mutations have in common is a reduction in the lifespan of cells and/or an acceleration of the transition to the state of cell senescence. Thus, our analysis, similar to the conclusions of many previously published works, indicates that the aging of an organism is a consequence of the aging of individual cells.
Keywords: Gompertz law; aging; progeria; survival curves.