Tackling assay interference associated with small molecules

Nat Rev Chem. 2024 May;8(5):319-339. doi: 10.1038/s41570-024-00593-3. Epub 2024 Apr 15.

Abstract

Biochemical and cell-based assays are essential to discovering and optimizing efficacious and safe drugs, agrochemicals and cosmetics. However, false assay readouts stemming from colloidal aggregation, chemical reactivity, chelation, light signal attenuation and emission, membrane disruption, and other interference mechanisms remain a considerable challenge in screening synthetic compounds and natural products. To address assay interference, a range of powerful experimental approaches are available and in silico methods are now gaining traction. This Review begins with an overview of the scope and limitations of experimental approaches for tackling assay interference. It then focuses on theoretical methods, discusses strategies for their integration with experimental approaches, and provides recommendations for best practices. The Review closes with a summary of the critical facts and an outlook on potential future developments.

Publication types

  • Review

MeSH terms

  • Biological Assay / methods
  • Humans
  • Small Molecule Libraries*

Substances

  • Small Molecule Libraries