Scanning electrochemical microscopy for determining oxygen consumption rates of cells in hydrogel fibers fabricated using an extrusion 3D bioprinter

Anal Chim Acta. 2024 May 22:1304:342539. doi: 10.1016/j.aca.2024.342539. Epub 2024 Mar 28.

Abstract

Three-dimensional (3D)-cultured cells have attracted the attention of researchers in tissue engineering- and drug screening-related fields. Among them, 3D cellular fibers have attracted significant attention because they can be stacked to prepare more complex tissues and organs. Cellular fibers are widely fabricated using extrusion 3D bioprinters. For these applications, it is necessary to evaluate cellular activities, such as the oxygen consumption rate (OCR), which is one of the major metabolic activities. We previously reported the use of scanning electrochemical microscopy (SECM) to evaluate the OCRs of cell spheroids. However, the SECM approach has not yet been applied to hydrogel fibers prepared using the bioprinters. To the best of our knowledge, this is the first study to evaluate the OCR of cellular fibers printed by extrusion 3D bioprinters. First, the diffusion theory was discussed to address this issue. Next, diffusion models were simulated to compare realistic models with this theory. Finally, the OCRs of MCF-7 cells in the printed hydrogel fibers were evaluated as a proof of concept. Our proposed approach could potentially be used to evaluate the OCRs of tissue-engineered fibers for organ transplantation and drug screening using in-vitro models.

Keywords: Cylindrical diffusion; Electrochemical detection; Extrusion 3D bioprinter; Hydrogel fibers; Oxygen consumption rate.

MeSH terms

  • Cells, Cultured
  • Humans
  • Hydrogels*
  • Microscopy, Electrochemical, Scanning
  • Oxygen Consumption
  • Printing, Three-Dimensional
  • Spheroids, Cellular*
  • Tissue Engineering / methods

Substances

  • Hydrogels